Controllable p?Type Doping of 2D WSe <sub>2</sub> via Vanadium Substitution

نویسندگان

چکیده

Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, efforts are still nascent. Here, we report scalable growth vanadium (V) WSe2 at front-end-of-line (FEOL) back-end-of-line (BEOL) compatible temperatures 800 {\deg}C 400 {\deg}C, respectively. A combination experimental theoretical studies confirm that atoms substitutionally replace tungsten in WSe2, which results p-type via the introduction discrete defect levels lie close valence band maxima. The nature V dopants further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing concentration. Hence, our study presents method precisely control density intentionally introduced impurities, indispensable production electronic-grade wafer-scale extrinsic semiconductors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllable N-doping of graphene.

Opening and tuning an energy gap in graphene are central to many electronic applications of graphene. Here we report N-doped graphene obtained by NH3 annealing after N(+)-ion irradiation of graphene samples. First, the evolution of the graphene microstructure was investigated following N(+)-ion irradiation at different fluences using Raman spectroscopy, showing that defects were introduced in p...

متن کامل

Effect of Sn Doping on Structural and Optical Properties of 2D α-MoO3 Nanostructures

Undoped and Tin (Sn) doped Molybdenum trioxide (α-MoO3) nanostructured thin films (which has lamellar (2D) structure) have been prepared using a simple and cost effective technique of spray pyrolysis on glass substrates at 450 ℃. Surface morphology, optical and structural properties of samples have been investigated using FESEM, UV-Vis spectroscopy and XRD analysis techniques, respectively. FES...

متن کامل

Doping against the native propensity of MoS2: degenerate hole doping by cation substitution.

Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, moly...

متن کامل

n-type conversion of SnS by isovalent ion substitution: Geometrical doping as a new doping route

Tin monosulfide (SnS) is a naturally p-type semiconductor with a layered crystal structure, but no reliable n-type SnS has been obtained by conventional aliovalent ion substitution. In this work, carrier polarity conversion to n-type was achieved by isovalent ion substitution for polycrystalline SnS thin films on glass substrates. Substituting Pb(2+) for Sn(2+) converted the majority carrier fr...

متن کامل

Activating Nonreducible Oxides via Doping.

Nonreducible oxides are characterized by large band gaps and are therefore unable to exchange electrons or to form bonds with surface species, explaining their chemical inertness. The insertion of aliovalent dopants alters this situation, as new electronic states become available in the gap that may be involved in charge-transfer processes. Consequently, the adsorption and reactivity pattern of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Functional Materials

سال: 2021

ISSN: ['1616-301X', '1616-3028']

DOI: https://doi.org/10.1002/adfm.202105252